BOUNDARY LAYER AT A PLATE WITH AN ARBITRARY
INJECTION MODE

V. Ya. Shkadov and Yu Zui Kuang UDC 533.6.011

A sufficiently general solution is obtained, applicable to a boundary layer with any injection
mode (up to a certain limit).

1. We consider a horizontal plate in a laminar air stream. A gas is injected into the boundary layer
through the plate. The air is considered a homogeneous diatomic gas. In this way, there exists a binary

mixture in the boundary layer. Any dissociation or chemical reaction is disregarded, and thermal diffu-
sion is assumed negligibl e.

The solutions to this problem found in the technical literature [1-3] are usually given in the self-
adjoint form and correspond to a specific mode of injection through the surface.

The equations for a steady laminar boundary layer of a binary mixture at a plate can, after a Dorod-
nitsyn—Lis transformation [4, 5], be written as

the equation of motion

lf'ﬂ"'m + fffm = 2§ (f‘ngfﬂ _f-rmfg):'

the equation of diffusion

IL
Do San Sy = 2 (Sfa—S4f0) M

the energy equation
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The continuity equation becomes an identity by introduction of the flow function, with the following designa-
tions:
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Subscripts 1 and 2 refer to pure coolant and to pure air, respectively.

The plate temperature is held constant. The physical properties which appear in the equations are
assumed constant.
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The boundary conditions are:
for = 0: f'n (0) = 0; 0= ew =: const; (f -+ 2§f§)w == (f 4 2§f§)w8w :

cEE B s - vz j¥@=¢®- @
pr o (&0 Oublate VE

for M—> oo: fn—>2; 6—>1; S—>0.

It is to be noted that stipulating the injection mode as pyvy ~ 1A% will render the problem a seli-
adjoint one and will transform the system of boundary-layer equations into a system of ordinary differen-
tial equations [6]. '

2. System (1) with the boundary conditions (2) is solved by the method shown by Shkadov in [7-9],
i.e., by series in variables &(£), £®'(t), &21:" (¢),... . The coefficients of these series are functions only
of 7 and they satisfy the ordinary differential equations. Inasmuch as one can solve separately the equa-
tion of motion, then the equation of diffusion, and finally the energy equation, we will carefully analyze the
equation of motion (1) with the thought that the solution of the other two equations is analogous.

Substituting f(¢, n) = &(£) + £(&, n) in the equation of motion yields
~f’rmn (@ +F+ 25?5 + 289") Ffm - nggn ﬁl =0, (3)
and the boundary conditions \
for n=0: f=0; F,=0;
for n— oo: fn—+2.
The dash above f will henceforth be omitted. We seek a solution to (3) in the form of a series
f == foo & Cofor + O‘gfoz 4 & (1o + &of1 + Oﬁgfm) + “%(fzo = for) -+ oy (s
+ aofa) -+ O‘?(f-io + o) -+ 0y (Fsg 4 Ctofsa) -+ 2 (Fop -+ Cofer) Ao+ s (4)
where
= BE) b= B oy = &‘% =1 o= PP, ..,
and f;; are functions of 1 only.
i

Inserting (4) into (3), then collecting terms with the same combinations of o

zero, we obtain the ordinary differential equations

and equating them to
Pl ¢
dn? +.f°° dn?

for < Faofor 4 Foofor = — fon;
fo2' + foofoe -+ foofor = — (1 + for) for; (3)
fio + foofio — 2 fao flo + 3faofio = 2ot foo—2(1 + for) foos
and in the general form
fii" = foofiy — kufon s -+ kofoofi; = Am).
The boundary conditions are for fy: "
N="0; foo="0; foo=0;
N> 00; fop—>2,
and for the other fj;:
n=0; fi = fi; = 0;
n=> 00; fi;—> 0.
Analogously, for the equation of diffusion we have
Spp = 0;
Le

Br Sot L fooSer = 0;
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Pr

Le , . ,
Br S0 -+ fopSi0 — 200815 = 2f00Sy1,

Stz + fopSoz = — FoSots

and in the general form

Le . . . .
P Sij + fooStj — kyfeeSi; = B m).

For the energy equation we have
l;;-eoo A+ foofoo = — (B — 1)M?v foos

. . ' - . —Cp e
1 81+ FooB01:= —2 (k—1YMZ foofor — 800 (foi o il 2 Sox>;
Pr ¢ Pr
1 . , 2 - , .

or 8oz + fooBoz = — (k — 1){for -+ Qfmfoz) — Boofoz — Oorfor -

Cp

_ Lem =) (g;. 05+ 06,801),

and in the general form

| . ,
— 85 + foo0i; — Ryfos; = C (m).
Pr

The boundary conditions are
at n=0: S;="L(n); 8 ==0,; 8;=0;
at 11— 00: Si;—0; 8= 1; 8,;—0.
We note that the first equation in (5) for fy, with the corresponding boundary conditions represents
the well-known Blasius problem [10].

3. Equations (5) were integrated numerically by conversion to a system of difference equations,
which was then solved by the elimination method. The elimination formulas for the third-order equation
of motion are shown here in detail. With the aid of the central differences [11], we obtain the following

elimination formulas:
fi = Pifera + Qifipr + Ry, (6)

where
i . i

2 [ ( 1 +hros +~;— k2o —é—q,-_z)q.-_. hgh®f0i—2hfooi— é Pi-zl oF,

Pi:"—_‘

( 1+ hfoos+-2']~k1h2fl;oi—-%z~ Qt—z) Piy— ( 1 — hfon + *—;— klhzf(;ot)

Qi = F1 ’
2 Rea— (1 o+ 5 i — =~ Quet) Rt 104
R = A
@i=223, ..., n—2)

1
PD= Q0= R0= 0; P1A= 0, Q1= -Z; R1= 0.

With the aid of the eliminating relations at points n—2, n-3, n—4, the difference equation at point
n~1, and the boundary condition on the right-hand side, we find I and fy~y. Then, by reverse elimination,

from (6) we find fn_z, fn..g, cuey fi'

Computer programs have been set up for solving Egs. (5), and calculations were made with Le = 1.4,
Pr = 0.725, Ma,, = 3, k = 1.4, Ty = 500°K, Te = 273°K, and Cp2» Cp1 taken from [12]. The integration step
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TABLE 1.

Values of the Derivatives of f, 6,

and S
I’ (0) 0,33206
F/,(0) 071861
F, (0) —0,44048
f., (0  0,00042
F,(0)  0,00041

sz (0) - 0,00440
f,. (0) —0,01260
i, (0)—0,04115
., (0) — 0,00804
[, (©) 0,00777
i, (0) —0,67819
f7,0)  0,35302
f7,(0) 0,03392

TABLE 2. Values of Skin Friction, Thermal

6 (0) —0,11772
6’ (0)—0,10772
8, (0) —0,10770

6, (0) 0,80177
6 (0 072224
6, (0) 0,62072
8, (0) 0,73810
8., (0) 0,40360
6 () 0,61002
8 (0) 045677
B, (0) 0,36460
0’ (0) 0,61030
8 (0) 0,45746

Flux, and Diffusion Current

8,0 0

S’ (0) —0,25892
o1

8. (0)—0,19943

s, (0)—0,51785

S’ (0) —0,51447
11

S’ (0) —0,51192

T2 -

S '(0)—0,25892

S, (0)—0,23878

S, (0) — 0,66556

S’ (0)—0,67517
k2

S, (0) —0,50792

S., (0) —0,00527

S’ (0) —0,09525

Cy
T/t
9/

9g

we obtain

From (8) and (9), after a transformation, we obtain

0
1
1
0

0,04
0,770
0,916

i 0,0239

0,06 0,1
0,515 0,232
0,845 0,807
0,0438 0,0597
Oy = D = .?Kgﬁ_
Pwkum

was h = 0.04. The integration interval was 1 = 7.5,
where fi]- already closely approached the asymptote.
Calculated were also the skin friction as well as the
thermal fluxes and the diffusion currents:

= iy (a—“—) or VT oV Re, = [ (0),

Oy
oT 5 B .
g=—1A, (.5..) o ¥2 Nu/VRex == — B (0), (7
Y Jw
oc 5 Pa ‘
ge= D, (5;) or V2 Nug/y/ Re, = Sy (0),

with £§5(0), 6};(0), and S;;(0) given in Table 1.

4. A more accurate quantitative comparison
between the self-adjoint case and anarbitrary case will
be made and advantages of an arbitrary injection mode
will be demonstrated on specific examples.

First we consider the well-known self-adjoint
case:

Pt = F () =~ ®
From the boundary condition (2)
k
g2 0
10 9—— L2 " (rr =gy
w”w @
0
=c=const; ;=0 =...=0. (£)]

‘1

VRe,

where ¢; = ¢/2V2 characterizes the rate of gas injection through the surface.

Relative values of skin friction, thermal flux, and diffusion current for various values of ¢; are given
in Table 2, where 7, and q; are the respective values without injection.

According to Table 2, T and q decrease with increasing injection rate, which agrees with theory.

b) For a nonself-adjoint case we selected the following injection mode:

pwvw ==

— (3+V‘)V§:’

BV a ¢

(1-+¢gp?

with £ = £/a. The dash above ¢ will henceforth be omitted. Then

G =B @) = —b—o—, oy =1 = —of —E

= 52" = 2u%f—
B=E =2

;) G =B

(14e

6u%p 5
AT (19

Letting a = 1, inserting (10) into expressions (7) for r, q, and g, We obtain the desired values. A
comparison between both cases shows that

i.e., pyVy, is a bounded quantity, which has some practical significance.

g— 0 whenp g, ~

L
VE

— for PuUy

_BLVEIVE.
(1+9?

3

In both cases a higher rate of

gas injection through the surface results in a lower skin friction and thermal flux, which agrees with theory,
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the curves of skin friction and of thermal flux for pyvy ~ 1/VE being asymptotes of the respective curves
for pyvy ~ (3 + VEWE/(L + £)2.

NOTATION

is the density of gas; |

is the dynamic viscosity of gas;

are the dimensionless coordinates;

is the dimensionless gas velocity;

is the dimensionless gas concentration;
is the dimensionless gas temperature;
is the thermal conductivity;

12 is the diffusivity.

Uag

Og>»o>m+»3 T O
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